Local Galois Module Structure in Prime Characteristic and Galois Scaffolds

Jelena Sundukova

May 20, 2014

Notation

Let K be a local field with perfect residue field both of prime characteristic, p.

Consider L/K a finite Galois extension of degree p^n , $n \ge 1$ and Gal(L/K)=G.

Also let \mathfrak{O}_L and \mathfrak{O}_K be their respective valuation rings with unique maximal ideals \mathfrak{P}_L and \mathfrak{P}_K .

Denote $\mathfrak{A}_{L/K}$ to be the associated order of \mathfrak{O}_L .

Recall the ramification groups of L/K defined as

$$G_i = \{ \sigma \in G : \sigma(x) - x \in \mathfrak{P}_L^{i+1}, \forall x \in \mathfrak{O}_L \} \text{ for } i \in \mathbb{Z}_{\geq -1}.$$

Here we consider totally ramified extensions with ramification numbers $b_1 \leq \cdots \leq b_n$ with $(b_i, p) = 1$.

Cyclic Extensions of Degree p.

Let L/K be a cyclic extension of degree p with a unique ramification number b and let a = rem(p, b).

• \mathfrak{O}_L is $\mathfrak{A}_{L/K}$ -free if and only if a|(p-1) (Aiba, 2003). Let us also consider a more general notion of freeness of fractional ideals of L - \mathfrak{P}_I^h over their respective associated order defined as

$$\mathfrak{A}_{L/K}(h) = \{ \alpha \in K[G] : \alpha \mathfrak{P}_L^h \subseteq \mathfrak{P}_L^h \} \text{ for } h \in \mathbb{Z}.$$

- Theorem by Ferton (1973) states exactly which \$\mathcal{P}_L^h\$ are free in char(\$K\$) = 0. It has been shown independently by Marklove (2014) and Huynh to work in char(\$K\$) = p.
- De Smit and Thomas (2007) used continued fractions to count minimal number of $\mathfrak{A}_{L/K}$ -generators.

Galois Scafford

Set $\mathbb{S}_p = \{0, 1, \dots, p-1\}$ and $\mathbb{S}_{p^n} = \{0, 1, \dots, p^n-1\}$. We write $s \in \mathbb{S}_{p^n}$ as $s = \sum_{i=0}^{n-1} s_{(i)} p^i$.

Let L/K be as before of degree p^n . Assume $b_i \equiv b_j \pmod{p^n}$ for all i, j. Denote $b \equiv b_n \pmod{p^n}$.

For $t \in \mathbb{S}_{p^n}$ define a map $\mathfrak{a} : \mathbb{S}_{p^n} \to \mathbb{S}_{p^n}$ by $\mathfrak{a}(t) := -b^{-1}t \pmod{p^n}$.

Definition: A Galois scaffold on L/K (of tolerance $\mathfrak{T} = \infty$) comprises of :

(1) elements $\lambda_t \in L$ for $t \in \mathbb{Z}$ such that $v_L(\lambda_t) = t$.

(2) $\Psi_i \in K[G]$ for $1 \le i \le n$ such that $\Psi_i 1 = 0$ and such that for each i and for each $t \in \mathbb{Z}$ we have

$$\Psi_i \cdot \lambda_t = \begin{cases} \lambda_{t+p^{n-i}b} & \text{if } \mathfrak{a}(t)_{(n-i)} \ge 1, \\ 0 & \text{if } \mathfrak{a}(t)_{(n-i)} = 0. \end{cases}$$

Are there any ramified extensions that possess a Galois scaffold? Yes. For exapmle, *one-dimensional* and *near one-dimensional elementary abelian extensions*.

Galois Scaffolds 2

For $s \in \mathbb{S}_{p^n}$ write $s \leq u$ if $s_{(i)} \leq u_{(i)}$ for all $0 \leq i \leq n-1$. Let $1 \leq b \leq p^n - 1$ and $b - p^n + 1 \leq h \leq b$. Define

$$d(s) = \left\lfloor rac{b(s+1)-h}{p^n}
ight
floor$$

and

$$w(s) = \min\{d(u) - d(u-s) : u \in \mathbb{S}_{p^n}, s \leq u\},\$$

which is equivalent to

$$w(s) = \min\{d(s+j) - d(j) : j \in \mathbb{S}_{p^n}, j \leq p^n - 1 - s\}.$$

Theorem (Byott & Elder, 2014, partial)

Suppose L/K has a Galois scaffold. Then \mathfrak{P}_L^h is free over $\mathfrak{A}_{L/K}(h)$ if and only if w(s) = d(s) for all $s \in \mathbb{S}_{p^n}$.

Ferton in characteristic p

Theorem

Let L/K be totally ramified cyclic extension of degree p with ramification number b and b - p + 1 ≤ h ≤ b. Also let b/p have a continued fraction expansion [0; q₁, q₂, ..., q_n] of length n, with q_n ≥ 2.
(i) If b = 1, then 𝔅^h_L is free over 𝔅_{L/K}(h) iff ^{1-p}/₂ ≤ h ≤ 0. Taking p > 2 this inequality becomes ^{3-p}/₂ ≤ h ≤ 1.
(ii) If b > 1 and b ≥ h ≥0, then 𝔅^h_L is free over 𝔅_{L/K}(h) iff
(a) for even n, h = b or h = b - q_n,

(b) for odd $n, b - (q_n/2) \le h \le b$.

(iii) If b > 1 and h < 0, then \mathfrak{P}_L^h is not free over $\mathfrak{A}_{L/K}(h)$.

Corollaries to the Byott & Elder Theorem

- Ferton: By replacing p with pⁿ in the fraction expansion we get: free ideals in degree pⁿ = Ferton + additional ones.
- \mathfrak{P}_L^b is free over $\mathfrak{A}_{L/K}(h)$ for all b.
- If $b = p^n 1$, then \mathfrak{P}_L^h is free $\iff h = p^n p^k$ for $0 \le k \le n$.
- If $b = p^n 2$ with $p \neq 2$, then precisely \mathfrak{P}_L^b and \mathfrak{P}_L^{b-1} are free.
- If b = (p-1)/m with $1 \le m \le p-1$ and $m \mid (p-1)$, then for $0 \le h \le (p-1)/m$, \mathfrak{P}_L^h is free $\iff h = 0$ or h = b.
- If n = 2, b = p + 1 with $p \neq 2$, then \mathfrak{P}_L^h is free $\iff h = 0$ or $h \ge (p + 1)/2$.